
IIFET 2004 Japan Proceedings 

 1

SOLVING REAL OPTIONS MODELS OF FISHERIES INVESTMENT WHEN SALVAGE 
VALUE IS DIFFICULT TO ESTIMATE 

David Tomberlin, NOAA Fisheries (USA), david.tomberlin@noaa.gov 
 

Valentina Bosetti, Fondazione Eni Enrico Mattei (Italy), valentina.bosetti@feem.it 
  

ABSTRACT 

Real options models arguably provide a useful framework for understanding individual fishermen’s 
investment and participation decisions, which play an important role in fisheries management issues 
ranging from capacity reduction to stock assessment.  While these models appear to predict actual 
behavior reasonably well, one important difficulty in applying them is that the salvage value of the fishing 
enterprise (or the opportunity cost of fishing, which when capitalized can be treated as a salvage value) is 
often difficult to assess.  For example, there may be few sales in a market for boats or licenses, and there 
may be little information on other employment opportunities available to fishermen.  This paper adopts a 
fisherman’s exit decision as a framework for exploring solution techniques for real options models when 
salvage value is difficult to estimate.  We first present a simple model of the exit decision as a 
disinvestment problem, and then describe this model’s solution by minimization and finite difference 
methods, including an iterative nonlinear least squares approach that allows rapid solution for a wide 
range of putative deterministic salvage values.  We then allow salvage value to follow its own stochastic 
process, again exploring this example with both minimization and finite difference techniques.  Our 
general conclusion is that minimization methods are much preferable when they apply, but that in most 
fisheries applications it will be necessary to resort to finite difference, finite element, or Monte Carlo 
methods.    
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INTRODUCTION 
 
Many important decisions in fisheries can be represented as optimal stopping problems, either from the 
fisherman’s perspective (e.g., whether to buy or sell a boat, or whether to participate in a particular 
fishery) or the manager’s perspective (e.g., whether to close a fishery or tear down a dam).   The essense 
of these decision problems is that the decisionmaker chooses whether to stop one process and start 
another.  If there is uncertainty about the effect of exchanging one process for another, and if there is a 
fixed cost or benefit to doing so, stochastic dynamic optimization models provide a framework for 
analyzing the decision problem.  In this paper we are primarily concerned with issues raised by such 
lump-sum costs or benefits, examples of which include the price of a new engine, the price of a license to 
enter a limited-entry fishery, or the opportunity cost of permanently exiting such a fishery,.  For the sake 
of concreteness, we consider this last case, a fisherman’s exit decision, in which the fisherman can 
exchange the value of the fishing enterprise for a lump-sum benefit.  This benefit, depending on the 
circumstance, might be the scrap value of a boat, the sale price of a tradable permit, or simply the 
capitalized expected value of entering alternative fisheries.   
 
Our purpose in this paper is to describe and analyze some of the issues raised by the specification of this 
benefit, which we will refer to generically as ‘salvage value.’ Our model fisherman faces a choice 
between staying active in a limited-entry fishery, or permanently exiting that fishery.  If he chooses exit, 
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he is free to pursue other fisheries.  Though each alternative fishery could be treated as a separate project 
with its own dynamics, that approach significantly complicates the analysis.  Therefore we define the 
capitalized expected value of the next-most-profitable alternative fishery as the salvage value of leaving 
the limited-entry fishery permanently.  In past work, we have found that this value is difficult to estimate 
and that model results are sensitive to the specification of salvage value.  Even in cases where the 
definition of salvage value is more traditional, such as the sale price of a boat, there may be few boat sales 
and the information may not be publicly available.  Additionally, the salvage value may be changing over 
time, and may be linked to other stochastic model variables.   
 
We explore the implications of these issues in the context of a ‘real options’ model, a variety of stochastic 
dynamic optimization model.  Real options models, which draw on the tools of financial economics,  
provide a representation of optimal stopping problems that is convenient for many purposes.  They have 
become increasingly popular in corporate finance, and have found some application in natural resource 
economics.  While the technical apparatus of these models is borrowed from financial economics, the 
underlying concept is the same as the discrete-time stochastic dynamic programming models more 
familiar to economists: agents make decisions (often stopping decisions, and often irreversible) by acting 
on random state variables evolving as stochastic processes, with the aim of maximizing the expected 
value of some objective function. 
 
As with other dynamic optimization models, analytical solutions of real options models are not obtainable 
in most interesting applications.  A variety of numerical techniques can be used, depending on the 
structure of the particular problem and on the degree to which analytical work can be done prior to the 
numerical work.  In the context of stopping problems, model development ideally proceeds from 
specification of stochastic processes, to identification of partial differential equations obeyed by the 
optimal solution, to solution of those partial differential equations and identification of stopping 
thresholds (such as the revenue level at which it is optimal to enter or exit a fishery).  When analytical 
solutions to the partial differential equations can be found, these solutions and their boundary conditions 
may be used to find the stopping values as the solution to systems of nonlinear equations.  When the 
partial differential equations can be specified but not solved explicitly, finite difference or finite elements 
methods can be applied.  Still more generally, when the dynamic optimization problem cannot be reduced 
to a partial differential equation or system of equations, simulation methods may be used.  
 
In this paper, we focus on the first two techniques: the solution of real options models represented as 
systems of nonlinear equations and as partial differential equations.  We begin by demonstrating the 
application of both methods to a very simple representation of the exit decision, then discuss some of the 
numerical problems that arise in more complicated models and describe a simple grid search algorithm 
that is helpful in some circumstances.  Finally, we allow salvage value to follow a stochastic process, and 
again apply both nonlinear equations and finite difference solution techniques to this more general model.    
 
Our general conclusions are that minimization methods provide significant advantages if analytical 
solutions to the partial differential equations can be obtained: they are faster, involve fewer parameters to 
be specified, and provide more precise estimates of optimal stopping values.    They can also be applied to 
several important situations commonly arising in fisheries, such as the analysis of entry and exit decisions 
and latent capacity.  In many cases, however—often as a result of the stochastic process chosen to 
represent a state variable or the presence of multiple state variables—finite difference, finite element, or 
Monte Carlo methods will be necessary.  It is our hope that this paper gives fisheries researchers some 
insight into what to expect from two of these solution techniques, and, for those unfamiliar with options 
modeling, an appreciation of the utility of this framework. 
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SOLUTION METHODS WHEN SALVAGE IS DETERMINISTIC 
 
We begin by laying out a model of a fisherman’s exit decision, which will be the basis for the rest of the 
analysis in this paper1. 
 
Suppose a fisherman faces a choice between staying active in a limited-entry fishery or exiting that 
fishery permanently, and that the fisherman’s goal is to maximize the expected value of the discounted 
profit stream.  Suppose further that periodic revenues R follow a geometric Brownian motion: 
 

RdzRdtdR σα +=)1  
 
where α is the instantaneous rate of change, σ is the instantaneous volatility, and dz is a standard 
Brownian motion.  Given this stochastic process for revenue, the value F of a fishing enterprise with a 
perpetual option to cease operations is the solution to the following partial differential equation: 
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where C is periodic operating cost and ρ is the fisherman’s discount rate.  If the fisherman elects to exit 
the fishery, he receives a salvage value S, which may be the sale price of a boat or license, or the 
capitalized value of earnings in a different fishery or other activity.  That is, the salvage value is whatever 
the fisherman gains in exchange for giving up the current fishing enterprise.  Salvage value can be used to 
impose boundary condition on (2) as follows: 
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The first condition (known as the value-matching condition) requires that, at the optimal exit threshold Rx, 
the value of the project with option must equal the salvage value for which it is exchanged.  The second 
condition, which is germane to the finite difference approximation but not the minimization approach, 
simply requires that the value of the project when revenues are zero also be the salvage value.   The third 
condition states that, at very high revenues, the expected value of the project with an exit option is the 
same as the expected value without the option: as revenues grow arbitrarily large, the exit option has no 
value.  We assume here that S is not a function of R.  Solution of the system (2-3) yields the value of the 
active firm F and also the value of Rx, the revenue level below which an expected-profit-maximizing 
fisherman would optimally exit.   
 
The model presented here treats salvage value as deterministic, though it may be unknown to the analyst.  
This assumption simplifies the model, and is in many circumstances quite appropriate (e.g., a fisherman’s 
reservation value for selling a tradable permit), though we will later allow salvage value to be a stochastic 
process itself.  If we assume that the exit option is perpetual, so that the derivative with respect to time is 
zero, the system (2-3) may be solved analytically, which yields a system of nonlinear equations that must 
in turn be solved for Rx.  Solution of these nonlinear equations will require numerical methods in all but 
the simplest cases.  Alternatively, we may directly approximate the system (2-3) using numerical 
techniques such as finite differences.  We next demonstrate these two approaches, and compare their 
results and performance. 
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Solution by Nonlinear Least Squares 
 
The model (1-3) is equivalent to an American put option, which in general does not have a closed-form 
solution.  However, if we treat the exit option as perpetual, which is not too strong an assumption in many 
fisheries, we can obtain the following solution: 
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where A is a constant yet to be identified and β is a function of the parameters α, σ, and ρ (see [1] for a 
complete derivation of the corresponding call option).  Using this result, conditions (3b-3c) lead to 
following systems of two nonlinear equations in two unknowns (Rx, Ax): 
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A system this simple may be solved algebraically for the exact solution.  In general, systems of nonlinear 
equations may be solved by relying on extensions of Newton’s method or conversion to minimization 
problems [2, 3].  We adopt the latter approach, finding {Rx, Ax} that minimizes the sum of least squared 
errors: 
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Solution of this simple problem is extremely fast and reliable.  We present results of an application below, 
but first introduce an alternative method, finite difference approximation. 
 
 
Solution by Finite Difference Approximation 
 
Another method that may be used to solve for the exit threshold Rx is direct approximation of (2) by finite 
differences [4].  The real benefit of this approach is when the partial differential equation(s) such as (2) 
cannot be reduced to a system of nonlinear equations, but we apply the method here for comparative 
purposes. 
 
The finite difference method proceeds by replacing differentials with differences and then solving over a 
grid of time and state variables (here, revenue) subject to the boundary conditions.  The easiest way to do 
this is to derive the partial differential equation for the exit option value alone, which we designate G:  
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The following difference approximations are used: 
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where t and i are indices of the time and revenue grid spacing, respectively.  Substituting these difference 
approximations into (7) and rearranging yields a linear equation implicitly relating the values of the exit 
option Gt to its value at Gt+1: 
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There is such an equation describing the value of the option at each point on the grid.  This system of 
equations, subject to boundary conditions analogous to (3), yields a numeric approximation to the 
function G and also the revenue value Rx at which the exit option is optimally exercised. 
 
 
An Application and Comparison of Methods 
 
Here we present results of the simple exit model, solved by both of the above methods for comparative 
purposes.  Our example is based on data from the California salmon fishery.  The data used were fleet 
average values for revenues and cost proxies (operating and license costs).  Maximum likelihood 
estimates of the parameters α and σ were derived from the revenue series, and a real discount rate of 5% 
(continuously compounded) was assumed.  We compared two putative real salvage values, $10,000 and 
$40,000.  While these values are very low relative to those that would be expected in a heavily-capitalized 
fishery, most boats in the California salmon fishery are small and employ simple technologies.  Further, 
because the fishery for which we are defining the exit option is only open from May to September, the 
relevant salvage value is what fishermen who leave the salmon fishery could obtain in other fisheries (or 
other employment) during the summer months.  Based on our analysis of the catch of salmon fishermen 
in alternative fisheries (primarily albacore tuna) in years when they do not catch salmon, we believe that 
these two salvage values are reasonable for this fishery. 
 
Table 1 shows the parameter estimates used, the solution by nonlinear least squares, and the solution by 
finite differences.  To approximate the process of information arrival and expectations updating, the 
parameters were generated by maximum likelihood estimation using rolling 7-year data sets, e.g., the 
parameter estimates for 1988 were derived from data for 1982 to 1988.  Because the discounted sum of 
future revenues is not bounded when α exceeds the discount rate, the thresholds in this case are set to 
zero.  We have not included the exact solutions because in every case they were within $10 of the 
minimization results, i.e. for all practical purposes there was no meaningful difference between the 
nonlinear least squares and exact solutions.   
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Table 1: Optimal exit thresholds by year  
(in $000s of real dollars, base year 2000)  

   
Nonlinear Least Squares Finite Differences 

  α σ S=10 S=40 S=10 S=40 
1988 0.18 0.67 0.00 0.00 0.00 0.00 
1989 -0.02 0.83 1.07 1.30 1.30 1.50 
1990 0.16 0.63 0.00 0.00 0.00 0.00 
1991 0.04 0.58 0.27 0.34 0.40 0.40 
1992 -0.06 0.56 2.02 2.57 2.20 2.80 
1993 -0.06 0.56 2.26 2.83 2.50 3.10 
1994 -0.10 0.51 2.94 3.67 3.20 4.00 
1995 -0.10 0.52 2.95 3.68 3.20 4.00 
1996 -0.01 0.32 2.24 2.88 2.40 3.00 
1997 0.04 0.35 0.53 0.67 0.60 0.80 
1998 -0.03 0.43 2.08 2.69 2.20 2.90 
1999 0.12 0.54 0.00 0.00 0.00 0.00 
2000 0.13 0.54 0.00 0.00 0.00 0.00 
2001 -0.01 0.61 0.86 1.17 1.00 1.30 
2002 -0.01 0.61 1.01 1.33 1.20 1.50 

 
As Table 1 shows, the estimated exit threshold varies widely from year to year as parameter values 
change.  The average difference in threshold values for S=10 and S=40 is 27% for the nonlinear least 
squares results and 25% for the finite difference results. The finite difference estimates of the exit 
threshold are consistently higher than those from the nonlinear least squares.  This overestimation is 
partly due to the use of a finite-horizon (100-year) grid to approximate an infinite-horizon problem and 
partly due to approximation error.  Both of these problems can be mitigated (by increasing the time 
horizon and by making the grid finer), but at the cost of increased computation time. 
 
The nonlinear least squares approach is clearly preferable to the finite difference approach for the simple 
example given above.  However, in more complicated models the partial differential equations 
corresponding to (2) above will often not have analytical solutions.  For example, different specifications 
of the stochastic processes for state variables may preclude analytical solution, as may the presence of 
multiple state variables.   
 
 
Iterative Nonlinear Least Squares for Harder Problems 
 
In some cases, such as when a fisherman can choose to move back and forth among states (e.g., active to 
idle and back) by paying fixed costs for each move, the choice problem may be representable as a more 
extensive system of nonlinear equations.  In the California salmon fishery, fishermen must pay each year 
to maintain their limited-entry permit, whether they fish or not: once the permit has lapsed, it cannot be 
renewed.  Thus a fisherman with a permit can be active, receiving a stream of revenues from salmon; be 
idle but maintain the permit, in which case he pays a permit price but has neither operating costs nor 
revenues; or exit the fishery, in which case he saves the expense of the license fee but can never again 
take part in the salmon fishery.  The value of being in each of these states is: 
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where VA is the value of the active boat with an option to suspend salmon fishing, VI is the value of an idle 
boat with the options to either resume salmon fishing or to exit the fishery permanently, and VX is the 
value of the salmon fishing enterprise once the boat has exited, i.e. zero.  Our goal is to identify the 
thresholds RI, RA, and RX, at which (respectively) the fisherman suspends fishing, resumes fishing, and 
exits the fishery for good.  To accomplish this, we invoke value-matching and smooth-pasting conditions 
as follows: 
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Here S represents the value of the alternative fishery, as before, TI is the transition cost of moving from 
salmon into the other fishery, and TA is the transition cost of moving from the alternative fishery back into 
salmon.   At RI, the idling threshold, the value of being active in the fishery is just equal to the value of 
being idle in the salmon fishery, plus the value of the alternative fishery, less the cost of making the 
transition to the alternative fishery.  In our case, this transition cost is small, essentially a matter of a day 
spent in port while changing gear.  At RA, the resumption threshold, the value of being idle in the salmon 
fishery must equal the value of the active project less the foregone alternative fishery and the transition 
cost of re-entering the salmon fishery (again, a matter of changing gear).  At RX, the value of being idle is 
just equal to the value of exiting, which is to say the options held by the idle boat are exactly offset by 
cost of the salmon permit purchase.  Notice that both the idle and the exited boat have access to the 
alternative fishery.  
 
Making substitutions from the system (9-11) into the system (12-14) yields a system of six nonlinear 
equations in six unknowns.  While this system can be solved efficiently given good starting values, it is 
often quite difficult to find those starting values, without which the solver can converge to incorrect 
solutions (including high residual values and imaginary numbers).  We have found that, rather than solve 
for a few select salvage values (our initial strategy), it is much faster to solve for a large number of 
salvage values by creating a grid of salvage values and using the solution to (12-14) at a given S as the 
starting value set for the solver at the next increment on the salvage value grid.   Figure 1 shows the result 
of applying this technique to both the simple exit model and the model with an idle option.  The lines 
represent, from top to bottom, the resumption threshold RA_6, the idling threshold RM_6, the exit threshold 
from the simple exit model of the previous section RA_2, and finally the exit threshold from the model with 
the option to suspend operations RX_6.  As intuition would suggest, the exit threshold is much lower in the 
model that includes this option.  
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Figure 1: Action Thresholds Compared 
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STOCHASTIC SALVAGE VALUE 
 
In some contexts, it may be more appropriate to think of salvage value itself as following a stochastic 
process.  For example, the sale price of boats is generally linked to trends and fluctuations in local fish 
price and catch.  Here we follow a simple approach to this problem, suggested by [5], in which salvage 
value is treated as a numeraire.  While this simplification is not appropriate in all circumstances, it will 
allow us to examine the implications of introducing stochastic salvage value without facing the numerical 
challenges raised by a more general specification in which the partial differential equation has multiple 
state variables.  Because it makes more sense to normalize project value by salvage value than to 
normalize revenues by salvage value, we drop discussion of revenues and costs, and proceed with a single 
variable V, i.e,  the expected capitalized value of profits from salmon fishing. 
 
We let the value of the fishing enterprise and salvage value follow lognormal diffusions: 
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Following [5], we define a variable Y = V/S and let H be the value of the exit option normalized by 
salvage value (in the notation of the previous section, H(Y,t) = G(V,S,t)/S).  The partial differential 
equation governing the value of the exit option is then 
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Yσ  is the variance of the normalized variable, Sδ  is the percentage by which the disount rate 
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exceeds the drift rate of salvage value,  and Vδ  is the percentage by which the disount rate exceeds the 
drift rate of project value.  We maintain the δ  terms here only so that the reader may compare the 
exposition to that in [5]; the significance of the term )( VS δδ −  is simply the percentage by which the 
drift rate of project value exceeds that of salvage value. 
 
The boundary conditions on (13) reflect the normalization as well: 
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The first condition requires that at the optimal exit threshold, the option value be worth its net exchange 
value.  The second condition is simply the normalized equivalent to condition (3b): even if the ratio Y 
falls to zero, the option H is still worth whatever can be had by exercising it.  Since the abandonment 
option G at V=0 can be traded for S, the normalized abandonment option H=G/S can be traded for S/S=1.  
Finally, the third condition requires that the abandonment option become worthless as the ratio of project 
to salvage value becomes very large. 
 
As before, if we assume the exit option is perpetual, we get an analytic solution, which in this case is 
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which, with the boundary conditions, leads to the system of nonlinear equations 
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Otherwise, we can again resort to a finite difference approximation, following the same steps as in the 
previous section.  Because the exit thresholds thus identified are not directly comparable to those obtained 
under the deterministic salvage value scenario, we don’t report results for all years.  Instead, Tables 2 and 
3 demonstrate the effect of varying the degree of correlation between project value and salvage value and 
of varying the volatility parameter for salvage, σS.  The effect of increasing correlation between V and S is 
to increase the exit threshold.  The effect of increasing the variance of salvage value is to decrease the exit 
threshold, except at very small values of σS, where the effect of correlation dominates the effect of σS. 
 
 

Table 2: Optimal exit ratio YX, as a function of correlation(V,S) 

Corr(V,S) Nonlinear Least Squares Finite Differences 
0.00 0.21 0.26 
0.25 0.25 0.28 
0.50 0.30 0.34 
0.75 0.37 0.40 
1.00 0.50 0.54 

σS = 0.25 for all values here. 
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Table 3: Optimal exit ratio Yx as a function of σS 

σS Nonlinear Least Squares Finite Differences 
0.00 0.25 0.28 
0.25 0.30 0.34 
0.50 0.25 0.28 
0.75 0.17 0.20 
1.00 0.11 0.16 

Correlation(V,S)=0.5 for all values here. 
 
 
ASSESSMENT AND CONCLUSIONS 
 
Above, we have demonstrated the significance of different assumptions about salvage value in the 
application of real options models to fisheries investment, and explored some of the numerical approaches 
that may be used in this context.  To accomplish this, we have ignored several important complications, 
such as time-varying parameters, parameter uncertainty, multiple state variables (addressed in [6]), and 
alternative stochastic processes for state variables.  Our general conclusions are as follows.  Minimization 
techniques for systems of nonlinear equations solved the exit problem quickly and accurately, but may be 
difficult to apply to large systems of nonlinear equations. Finite difference methods did not perform as 
well, specifically they overestimated the exit thresholds and took much longer to generate results.  
However, they are a reasonable alternative for situations in which the partial differential equation has no 
explicit solution, as will often be the case.  Finally, the reduction of a problem with stochastic salvage 
value to an equivalent single-factor model enables an exploration of the impact of stochastic salvage 
value on the estimated exit threshold, but in some cases it will be necessary to solve directly the model in 
which salvage value and project value both follow stochastic processes.   
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ENDNOTES 

1. More complete descriptions of similar models are available in [1].  [5] treats abandonment options 
generally, while [6] addresses fisheries exit with two state variables, price and catch. 


